Int. J. Solds Structures Vol. 30, No. 1, pp. 37-60, 1993
Printed in Great Britain.

STABILITY ANALYSIS OF INHOMOGENEQUS,
FIBROUS COMPOSITE PLATES

MAHESH D. PANDEY and ARCHIBALD N. SHERBOURNE
Solid Mechanics Division, Dept. of Civil Engineering, University of Waterloo, Waterloo,
Ontario, Canada N2L 3Gl

(Received 18 January 1991 ; in revised form 5 June 1991)

Abstract—Materials with deliberately designed forms of anisotropy and inhomogeneity, obtained
by manipulating microstructural composition, can provide excellent solutions to existing design
constraints and create new design opportunities. This new class of problems, concerning opti-
mization of the internal structures of elastic bodies, is the subject matter of the present investigation.
The paper focuses attention on deliberately designed inhomogeneity by controlling spatial fiber
distribution in a lamina, for improving uniaxial and shear buckling behavior of rectangular, uni-
directional and cross-ply laminates under a variety of boundary conditions. In the literature, opti-
mization of the orientation of fibers (through thickness) in fibrous composite laminates with respect
to the buckling load is discussed extensively on the assumption of uniform spatial fiber distribution
in the plane of the plate. Design involving non-uniform fiber distribution, which has received much
less attention, appears to be an attractive option, at least from a theoretical point of view. Also, the
motivation comes from reinforced concrete structures where the non-uniform spacing of reinforcing
bars is quite common practice.

Non-uniform fiber distribution leads to the problem of inhomogeneous, orthotropic plate
buckling which is solved in two steps. Firstly, the prebuckling stress field is derived because the
assumption of uniform, uniaxial stress, common in homogeneous plates, is theoretically no longer
valid. Finally, out-of-plane buckling is analysed incorporating the prebuckling field derived earlier.
Within the framework of the Ritz method, a stress function formulation for plane-stress (stretching)
and a displacement formulation for buckling analysis, are employed. An important feature of the
analysis is using the classical analogy between in-plane stress function and out-of-plane buckling
displacement formulations which not only provides a unified analytical treatment but also reduces
the problem size significantly. For the analysis, a computerized Rayleigh-Ritz method, in con-
junction with Gram-Schmidt orthogonal polynomials as coordinate functions, is developed, which
is capable of modeling a variety of boundary conditions, viz. simple, clamped, free and their
combinations.

Uniaxial and shear buckling coefficients of unidirectional and cross-ply laminates are computed
for various cases of sinusoidal fiber distribution. It is found that, for given constant fiber volume, a
higher fiber concentration at the middle of the plate would generally increase the buckling load by
as much as 25% over a uniform distribution of the same amount of fibers. The paper highlights the
unusual tailoring capabilities offered by advanced composite materials.

NOTATION
a length of plate along x-axis
b width of plate along y-axis
B.C. boundary condition
Cp cross-ply ratio
D, E%/12
D, bending stiffness matrix of a laminate
E;, modulus of elasticity of fiber and matrix, respectively
F Airy’s stress function
Np total number of plies
N, ratio of ¥ at the plate centre to the edge
NN, non-dimensional uniaxial and shear buckling coefficients
R, En/E;
RZ Vm/ Y
t plate thickness
U.D. unidirectional laminates
Vi fiber volume fraction
174 non-dimensional plate deflection
X non-dimensional length (= x/a)
Y non-dimensional width (= y/b)
B plate aspect ratio (a/b)
Ve Ve Poisson’s ratio of fiber and matrix, respectively

Ox, Gy Oy in-plane stress resultants
00+ 00 applied unjaxial and shear stresses, respectively.
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INTRODUCTION

Among modern structural materials. the history of fiber-reinforced composites is barely
three decades old. However, in this short period of time, there have been tremendous
advances in the science and technology of this new class of materials. Low density, high
strength, high stiffness to weight ratio, excelient durability and design fiexibility of fiber-
reinforced materials are the primary reasons for their use in many structural components
in the aircraft, automotive, marine and other industries. The distribution and orientation
of fibers, elastic properties of fibers and matrix and lamination sequence are the new degrees
of freedom available to designers and their careful manipulation may significantly improve
structural performance.

Optimization of the orientation of fibers (through thickness) in fibrous composite
laminates with respect to the buckling load is discussed extensively in the literature (Hirano.
1979). In these exercises, the spatial distribution of fibers in the plane of the plate is assumed
to be uniform. The present study focuses on finding the optimal spatial fiber distribution
for fibrous composite plates under uniaxial compression (Fig. 1) and pure shear that would
maximize its buckling load. The motivation has come from reinforced concrete structures
where the non-uniform spacing of reinforcing bars is quite common practice. The study
focuses attention on deliberately designed inhomogeneity, due to variable fiber distribution.
for improving uniaxial and shear buckling behavior of rectangular laminates under a variety
of boundary conditions (B.C.).

The concept of materials with deliberately designed forms of anisotropy and inhomo-
geneity obtained by manipulating microstructural composition can provide excellent solu-
tions to existing design constraints and create new design opportunities. This new class of
problems, concerning optimization of the internal structures of elastic bodies, is motivated
from the composite nature of living tissues characterized by the presence of fibers, inclusions
and voids in some three-dimensional patterns resulting in anisotropic, inhomogeneous and
viscoelastic behavior. Oda (1988) emphasized the study of structural behavior of natural
systems (plants and animals) for developing innovative design techniques and highlighted
some of the distinctive features of the structural and material composition of bamboo. He
reported that, in bamboo’s cross-section, the radial distribution of fiber volume fraction is
in accordance with the minimum weight design criterion. The fibers are distributed from
the inner to outer surface in a non-linear fashion such that a higher concentration is found
near the outer surface.

In an interesting study, Rammerstorfer (1974) reported that the optimal distribution of
the Young’s modulus of a simply-supported column was a parabolic function resulting in
the highest possible increase in the buckling load of 21.6% over a uniform design. The
optimality criterion proved to be that of constant curvature which led to a parabolic
buckling mode contrary to the half sine wave (Euler mode) of a uniform column. Leissa
and Vagins (1978) discussed the possibilities of designing a non-homogeneous material for
a structural element of given dimensions and boundary and loading conditions such that
the internal stress field is the desired optimum. Banichuk (1979) presented a comprehensive
method for optimization of internal structure, basically fiber density and orientation, of
anisotropic, inhomogeneous composites in a number of plane elasticity and plate bending
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Fig. 1. Uniaxially loaded plate.
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problems. An elaborate computational scheme was developed which was based on the
minimum compliance optimality criterion. Banichuk and Kobelev (1981) considered the
optimization of the internal structure of a simply-supported column made of randomly
reinforced and macroscopically isotropic composite material. Using a Lagrange multiplier
technique, the optimal distribution of the elastic modulus as a function of fiber volume
fraction was found to be of sinusoidal nature, similar to that of Euler buckling. Kartvelishivli
and Kobelev (1984) presented a rigorous mathematical formulation of optimization of fiber
distribution in an inhomogeneous composite plate using variational calculus. Besides the
mathematical complexity, which overshadowed the physics of the problem, results were
obtained for limited cases of deflection, vibration and buckling of simply-supported piates.
It was suggested that the optimal fiber distributions tend to follow the Rayleigh mode of
vibration or buckling as the case may be. Bendsoe and Kikuchi (1988) suggested that
shape optimization problems can be transformed to technologically more feasible material
distribution problems using composite materials. They computed the optimal density of
periodically distributed small holes (perforations) in a given homogeneous isotropic medium
using the finite element method. The purpose was to minimize compliance for a given
material and volume.

Our attention is drawn to a very recent research paper by Leissa and Martin (1990) on
buckling and vibration analysis of inhomogeneous, unidirectional (0°) laminae using the
Ritz method. The scope of this study was strictly limited to simply-supported plates while
the present study offers a more general approach. Various additional analytical capabilities
of our approach, compared to that of Leissa and Martin (1990), are discussed in greater
length in the section entitled “Results and Discussions”.

Most of the studies on material optimization, e.g. Banichuk, Kartvelishivli, etc., were
based on formal optimization procedures such that the selection of design variables in a
search for extremal solutions satisfying the prescribed criterion, was conducted in an
objective fashion without depending on engineering intuition. Contrary to this, the literature
on isotropic plates with optimal thickness distribution is based on more practical and
physical observations. Spillers and Levy (1990) have shown mathematically that the optimal
thickness distribution is proportional to the strain energy density in simply-supported
isotropic plates. As the buckling mode for square plates involves half sine waves in both X
and Y directions, this implies that a sinusoidal thickness distribution with higher values at
the middle should provide an improved design. This hypothesis is contradicted by Parsons
(1955) who showed a significant increase in the buckling load using a sinusoidal variation
of thickness across the width (Y direction) of a simply-supported plate such that the
thickness was higher at the edges than the middle. In an extreme case, with zero thickness
at the centre and maximum at the edges (¥ = 0, 1), the buckling load increases up to four
times that of an equal volume, constant thickness plate. Similar observations were reported
by Capey (1956) and Mansfield (1959) regarding step and linear variation of thickness,
respectively, across the plate width. These observations have provided motivation for design
of improved inhomogeneous composites, discussed herein, avoiding the formal optimization
procedure.

Non-uniform fiber distribution leads to the problem of inhomogeneous, orthotropic
plate buckling which is solved in two steps. Firstly, the derivation of the prebuckling stress
field is required since the assumption of uniform, uniaxial stress, common in homogeneous
plates, is no longer valid, at least from a theoretical point of view. The second step would
be out-of-plane buckling analysis incorporating the prebuckling field derived earlier. Within
the framework of the Ritz method, a stress function formulation for plane-stress (stretching)
and displacement formulation for bucking analysis, are employed. An important feature of
the analysis is using the classical analogy between in-plane stress function and out-of-plane
buckling displacement formulations (Southwell, 1950) which not only provides a unified
analytical treatment but also reduces the problem size significantly. For the analysis,
a computerized Rayleigh-Ritz method, in conjunction with Gram-Schmidt orthogonal
polynomials (Bhat, 1985) as coordinate functions, is developed, which is capable of
modeling a variety of boundary conditions, viz. simple, clamped, free and their
combinations.

SAS 30:1-D



40 M. D. PanxDEY and A. N. SHERBOURNE
ANALOGY BETWEEN STRETCHING AND BENDING PROBLEMS

The displacement, W, of a flat plate due to transverse loading, ¢, and the extensional
Airy’s stress function, F, in plane stress. is governed by differential equations (biharmonic)
of identical form. This observation has served as the foundation for a well-developed
mathematical analogue (or duality) between two physically independent problems of out-
of-plane flexure and in-plane stretching in the field of variational calculus (Southwell, 1950:
Elias, 1966). This duality between stretching and bending of plates allows for transforming
the basic equations of one problem into the other by simply interchanging, according to
certain correspondence, the dependent variables of the two problems. In the following
section, the dual correspondence between stretching problem variables, viz. stress function,
in-plane stresses, strains and change of curvature. and bending problem variables. viz.
displacement, curvature, moment and transverse shears, respectively, are described. The
discussion is intentionally limited to isotropic plates for the sake of simplicity and its
generalization to orthotropic plates poses no theoretical problem.

Bending
The equilibrium of moments in the isotropic plate bending problem is given by

&AM, M, M,
T C Ty 1l

o T oxay Ay
Recalling the moment-curvature
M, = D(k,+vk,). M, =D(k, +vk,) and M, = D(1—vk,, (2)
and curvature—displacement relationships
ke=W.. k=W, and k, =W_. (3)
the equilibrium equation, (1), can be written as

q

40 - SR 4
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where D = Et}/12(1 —v?) is the plate bending stiffness. Here, the subscripts preceded by a
comma denote partial differentiation with respect to the corresponding coordinates. For
example, W, = O W/aX*.

Stretching
In-plane stresses, expressed in terms of Airy’s stress function, F, by

Oy = Fvy* 0, = F,X\' and O = MF.\}' (5)
satisfy the following equations of equilibrium

0o, 0oy, do,, Ja,
g‘, __‘,_ 7?-7 = 0 and - s + 4"_" = 0 (6)
ox av 0x Cy

The condition for compatibility of the accompanying strains is

a2 A2 N2
076, 0"V 17g

=0 (7

v
oyt dxady  0x°

which can be written in terms of a stress-function as (Haichang, 1984):
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T — ZF:xxyy + F,yyyy =0. €]

Analogy

A careful study of eqns (1)—(8) suggests the following analogy between variables of
stretching and bending. Scalar quantities in the two problems are equivalent, e.g. stress
function, F and displacement, W. Vector (tensor) quantities in the bending problem are at
a phase difference of 90° from corresponding vector (tensor) quantities in the plane stress
problem. Compatibility of curvatures and in-plane stress equilibrium are analogous

o, O, k, —k,
vl <9>
0y O, —ky ks
Equations of moment equilibrium and in-plane strain compatibility are of similar form
such that

.,
) [My —Mxyjl

x> . (10)
ny —Mxy Mx
2 %

A detailed discussion can be found elsewhere (Elias, 1966).

Duality between boundary conditions

As seen in the previous section, variables of the bending and stretching problems are
related to each other and, therefore, analogy between the boundary conditions of the two
problems can be easily developed (Bassily and Dickinson, 1977). In general, force B.C.s in
flexure correspond to geometrical B.C.s of stretching. A similar analogy has been employed
in the conjugate beam method of calculating deflections of beams.

Simple supports in bending. Simply-supported conditions in bending specified as
W=0 and M,=0 (x=0) an
would, from eqn (10), correspond to laterally restrained edges in stretching as given by
F=0 and ¢ =0 (x=0). (12)
Clamped supports in bending. A clamped edge is defined as
W=0 and W,=0 (x=0); (13)
the corresponding B.C.s in stretching would be
F=0 and F,=0 (x=0). (14)

Bending slope, a geomerical B.C., has no analogue in the stretching problem which implies
free edge (no constraint) conditions in the stretching problem. Thus, a clamped B.C. in
bending corresponds to free in-plane B.C.s. This fact is further elaborated by a specific
example in the following section.

Free supports. At the free edges, bending moments and transverse shear forces are zero
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Table 1. Duality between in-plane and out-
of-plane boundary conditions

Out-of-plane In-plane
Clamp (C) Free (F)
Simple (S) Simple (S)
Free (F) Clamp (O)
Mx—_—Mv—__Qx:Q):O (X=0) (15)

which means that strains and in-plane curvatures in stretching are zero:
=g =w,= -0, =0 (x=0). (16)

Thus, out-of-plane free edges correspond to in-plane clamped edges.

Bassily and Dickinson (1977) have shown that a normally restrained in-plane edge
corresponds to out-of-plane sliding edges. This duality between boundary conditions has
been summarized in Table 1.

ANALYSIS

Fiber distribution
Inhomogeneous laminate designs are constructed using the following sinusoidal fiber
distribution function

1+(N,—1)sin n¥

Vf( Y) = (Vf)avg (17)

2
1+ -(N,—1)
T

A similar function was employed by Parsons (1955) for describing various thickness dis-
tributions. Presently, N, is the ratio of fiber volume fraction at the plate centre (Y = 0.5)
to the edge (Y = 0) that defines the degree of non-uniformity and, also, the convex or
concave nature of fiber distribution depending upon N, > 1 or N, < 1, respectively. N, < 1
implies higher fiber concentration at the edges than the centre and the reverse is true when
N, > 1. N, = 1 corresponds to uniform distribution with a fiber volume fraction of (V7),,,.
This function, depending upon the value of N,, simulates a variety of distributions as shown
in Fig. 2. It should be emphasized that the total amount of fiber is constant and equal to
that of a plate with uniform distribution and fiber volume fraction, (V¢),,,. This function
is very convenient to study the advantages of a non-uniform over uniform distribution for
a given amount of fibers.

Martin and Leissa (1989) considered a parabolic variation of V; from 0 at the edges
to 1 at the centre which is reproduced herein as

V(Y) =4Y(1-Y) (18)
for the sake of comparison.

Constitutive relation
The constitutive relations for fibrous composite (Jones, 1975) can be restructured in
terms of fiber modulus, E;, as
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Fig. 2. Sinusoidal fiber distribution,

| AN
E = E[Vi+R(1-W)], E, = Ef[Vf+ (—E—f):l )
1
-y 1!
ny = Vf[Vf+R2(1— Vf)], ny = Gf[Vf+ (—R_f_):l N (19)
3
where
Ef Em Vi Rl(1+vf)
= —— =—_—, =—, R =———,
Gr 20+vw)” T E R: Ve T (14 Ryv)

vy, and v, are Poisson’s ratio for fiber and matrix, respectively, and E,, is the matrix modulus
of elasticity. All computations, in this paper, are carried out for T300 Graphite-Epoxy
composite materials (Mallick, 1988) with the following elastic constants: E; = 220 GPa,
E, = 3.6 GPa, v, =0.20 and v, = 0.35 such that R, = 0.01636 and R, = 1.75. Average
fiber volume fraction, (7)., is taken as 50%. Transverse variation of these elastic constants
in a unidirectional laminate is shown in Figs 3(a)-(d).

Unidirectional laminates

A unidirectional laminate is constructed by 0° laminae only such that fibers in all
laminae are oriented along the X-axis (Fig. 1), i.e. in the direction of axial compression.
The stress—strain relations can be written as

Ox Qu @i 0 €x
6,0=[C1z Q2 O L) 20)
Oxy 0 0 Q33 Exy

where
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Q22 = Q33 = nya d= l_vxyvyx and v,\x =

Compliance and bending stiffness matrices, C; and D, respectively, are defined as

Qijt3
12

Cross-ply laminates

A cross-ply laminate consists of Np unidirectionally reinforced orthotropic laminae
with principal material directions alternatingly oriented at 0 and 90° to the laminate
coordinate axes. Thus, the laminate consists of two distinct, 0 and 90°, ply-groups. The
thickness of the laminae in a group are identical but not necessarily the same as in the other
group. As a special case, a symmetric cross-ply laminate, with Np odd, is considered where
fiber orientations of odd and even numbered layers are 0 and 90°, respectively (Fig. 4).
Here, the ratio of the total thickness of 0° odd numbered layers to the total thickness of
90° even numbered layers, Cp, also known as the cross-ply ratio, is an important geometrical
parameter. The stiffness matrix Qj;, is given by (Jones, 1975):

. (Co+Cy) . 1+ CeCp)
Q11=‘TPI€3‘QH, 22=*T_T_%P*T—Qn,
05 =0. 0% =103, @i:=05%=0 (23)

The bending stiffness is defined by
Fibers

0° Lamina

90° Lamina

0° Lamina

j”xo
X
o
1 90° a

Y o

/N* B

X0

Fig. 4. Inhomogeneous cross-ply laminate (¥, > 1).
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I £
D, = [(CT"I)CB+1]QIIE’ D,; = [(1-Cr)Cs+ Cr]@1, o’
£ I
D|2=Q121—2‘a D33=Q331_2‘, D13=D23=0s (24)
where
1 Cr(Np—3)[Cr(Np —1)+2(Np +1)] 02
Cs = d Cr===".
N (FYGAY Vi-D(A+Cy)’° om0,

PREBUCKLING STRESS ANALYSIS

The prebuckling stress state in an inhomogeneous plate under in-plane forces is derived
by a stress-function (complementary energy) formulation combined with the Ritz method.
The stress function can be assumed to be in the following series form

F(X,Y) = Fp+ Z Z A (XYu(Y), (25)

m=] n=1

where F; is the particular solution which is due to applied stresses at the plate boundaries.
For example, in the case of uniaxial compression, ¢, = g,¢ at (X =0,1), a particular
solution for the stress function can be assumed as Fp = 10,,0?Y?2. ¢,(X) and ¢,(Y) are
orthogonal polynomial sequences which, at least, satisfy the geometrical boundary con-
ditions in X and Y directions, respectively. These polynomials are generated by a Gram-
Schmidt method for given boundary conditions, the detail of which can be found elsewhere
(Bhat, 1985 ; Pandey and Sherbourne, 1991). Using eqn (5), the in-plane stress field can be
given as

o

1 N N
g, = _E[FP + ;l Zl Amn¢m(X)¢n_y,,(Y)]
1 N N

3 g Z Amn¢my‘,(X)¢n(Y)9

a l n=1
= gl ;Am¢m (X, (7). (26)

The incremental potential energy of an inhomogeneous plate under plane-stress conditions
(Bassily and Dickinson, 1977) is given by

l 1 1
U = EJ; J; [Ci162+C302+2C 30,0, + Cy302]dX dY, 27N

which can be written in terms of the stress function as

U= ff[ﬂ‘cn(l’-'y)z‘f'czz( F.)* +2°CoF, F, +B*Cyy(F,,)Y]dX dY. (28)

The final expression for the potential energy, U,, can be written by substituting from eqns
(25) into eqn (28). Following the standard Rayleigh-Ritz method, minimization of the

potential function, U,, with respect to the coefficients A4, leads to the following system of
linear simultaneous equations
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N

Z Z mnif] ) = '{Pi/}- (29

m=1 n=1

The in-plane stiffness matrix, H,,,,. may be written

Hmm] Ri;l 7)[(’ S(O())1+ﬁ [Rir?lﬁ)‘cl“g“{)”+Rr(v:1”)’c S(O o ]“’ﬁ"lz})?;”)‘cII‘S‘“1

ni

+BRL N CHS, " (30)
and the loading vector, P, is given as

P, = B*Fp RV{C\SP}+Fp RP{C,SO) +B2Fp RO{Cs:8(")
+BH(Fp R{CLSPY+Fp RP(C,S™). (31)

The integral terms are denoted by the following compact notation

R = J Tond) IO 4y g s = f TY,(Y) dY(Y)
mi o ny - 0 dY

dx dx° dy ¥
d"¢n(X) d'y,(Y)
R"=| —=—-d "= -2 dY.
i j; ax X and 5] L 7 d

d'y, () d%,(Y)
dy” dy*

{CuSi} = j Cu(Y) (32)

The system of equations can be solved for coefficients, 4,,,. and thus the prebuckling stress
state can be defined.

BUCKLING

The potential energy of a rectangular orthotropic plate (Fig. 1) under in-plane loading
at incipient buckling is given as follows (Whitney, 1987)

1 [ R R .
UB = 2‘04_[' f {Dll(Wxx)~+ZDllﬂ~Wx,\f W‘vy_f_DZZ/)M(WW)-
0 JO

+AD5 AW o) et tlo (W) + BPa (W) + 20, W, } dX dY. (33)

Here, W(x,y) is the normalized out-of-plane displacement and D, i, j=1...., 3, are the
bending stiffnesses derived by applying Kirchhoff’s plate theory to orthotropic laminates
(Jones, 1975). The displacement functions are assumed in the following separable form:

N

WX.Y)= 3, ) Butu(X,(Y), (34)

m=1 n=1

where ¢,,(X) and ¥,(Y) are orthogonal polynomial sequences which, at least, satisfy
the geometrical boundary conditions in X and Y directions, respectively. The assumed
displacement functions from eqn (34) and prebuckling stresses from eqn (26) are substituted
in eqn (33). Following the standard Rayleigh—Ritz method, minimization of the potential
function, U, with respect to the coefficients B,,, leads to the following generalized eigenvalue
problem
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N N
Z 2 mm]] {an} == )’a t[Gmm}] {an} (3 5)
me=1 g
The stiffness matrix, E,,;, may be written as

Enmy = RV (D11 S9%) 4 B(RE? (D 125G} + RGO (D 12SS2))
+B* RGO {D ST} +4{FP RV DS} (36)

Terms {Dy S} are defined in the same way as {Cy,; S5} in eqn (32). The geometric
stiffness matrix, G, is given as

Gmm‘j - {};;r R{l !}S{Q 0}_;_52 RLG! Q)S{i t}+ﬁ (R((} i}sij 0)+R(i {}}Si? }))}

+ z }: AKL{ OII)S(200)+ RS(OO)S(GI])

K=l L=1

+ (_ﬁb) R(i 0, l)Sg,l 0)+ ( ﬁb) R(l IO)S(E G, l)}‘ (37)

The following compact notation is used to define three term integrations

o [T 9(X) E°¢a(X) d'd(X) s _ | 49L(Y) &Y () dY(Y)
Rigi? = L o dar ax 4 SEY = J; ay . ar dr

(38)

Uniaxial compression
In the case of uniaxial compression, o, = 6, at (X' = 0, 1), a particular solution for
the stress function can be assumed to be

Fp = %G'xgbz Y2 so that Fyyy = (’}'ngz and Fp‘xx == FP ={, (39)

X3

Coefficients 4,,,, defining the prebuckling stress field in eqn (26) can be obtained from the
following specialized form of eqn (29) :

Z Z [Hmm}]{Amn} = -o*x0a2{P} Where P BzR:@){CllSj(2)}+R§2){C12S§0)}'

m=1n=1

40

1t is clear that 6,,a” is the common multiplying factor for coefficients, A4,,,. The uniaxial
buckling problem can be defined from eqn (35) as

N

N
Z 2 {Emnq] {an} = A0ya % {anmj} {an}

m=§ =1

where
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M N
X — (L) Guo.0) 2 RO Q2,000 (2,0,0 011
Gmni/ - Rmx Sn[ +ﬂ Z Z AI&L 4lRKmi S[,n/ + RI\'ml 'S‘Ln/ !

K=1 L=1

(L gty [N RUFVER N
—Rl\’nu Si,n/ "Rk'm: SLn; ;’ (41)

Pure shear
In this case, a particular solution for the stress function can be assumed as

Fp = —00abXY sothat Fp = —o,ub and K =/ =0 (42)

In-plane stress analysis involves solution of the following system of equations

N N
N -~ 8 , . .

Z 2 [Hmmj] {Amn} = o-\‘y(la- {P.I\I‘ } B Where P;\i‘ = /))Rf " :( §3‘S‘p” }~ (43)
i

m=1 n=

while the buckling problem can be defined by eqn (35) after substituting appropriately from
(42) into (37).

Boundary conditions : further remarks

In this section, the analogy between boundary conditions in bending and stretching is
further explained by a specific example of a uniaxially compressed plate. The stress function,
F, and displacement, W, respectively, are assumed in the series form shown by eqns (25)
and (34).

Clamped supports (bending). Coordinate functions for W are chosen to satisfy B.C.s
(13) such that, ¢,,(X) = ¢,..(X) = 0 at X = 0. In-plane stresses, as defined in eqn (26).
provide the following conditions also referred to as free B.C..

o,=0, and o,=0 wr X=0.

Simple supports (bending). Coordinate functions are chosen to ensure, 6,,(X) =
Pm{X) = 0 at X = 0. From eqn (26), at the edge X = 0,

6, =0, 0,=0 and &, # 0 which refer to a laterally restrained edge.

RESULTS AND DISCUSSION

In-plane stress and buckling solutions for two loading conditions, riz. uniaxial com-
pression and pure shear, are discussed. A typical calculation of buckling loads consists of
two steps. Firstly, an accurate prebuckling stress field is derived using eqn (29) and,
incorporated in the second step of out-of-plane buckling analysis as shown by egn (35). The
duality between the plane stress and bending problems provides a concise and convenient
analytical framework but it should be clear that such duality is exploited for theoretical
convenience and may be far removed from practical situations. For example, a clamped
plate (CCCC) in bending is assumed to have free in-plane edge conditions (FFFF) that
may not be true in practice where a more complex combination of in-plane and out-of-
plane boundary conditions is likely to exist than one governed by the duality as discussed.
Nevertheless, the present approach allows one to obtain benchmark solutions and, also,
highlights the potential of inhomogeneous, composite laminates for improved buckling
behavior. The boundary conditions (B.C.) are denoted by the letter S for simple, C for
clamped and F for free along the four edges in the following order, x = 0, x = a (loaded
edges), v =0 and y = b (unloaded edges). Thus, support conditions denoted by SSCC
means that loaded edges, x = 0 and g4, are simply supported and unloaded edges. y = 0 and
b, are clamped.
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In-plane stress analysis

The in-plane stress solutions for axially compressed square plates with parabolic fiber
distribution and all four edges free, are reported in Figs 5(a)—(c). These results are in close
agreement with those obtained by Martin and Leissa (1989) who adopted a displacement
version of the Ritz method treating in-plane displacements, u and v, as variables which is
contrary to the proposed technique where stress function, F, is the only variable. A stress
concentration factor of ¢,/6,, = 1.19, as reported by Martin and Leissa (1989), is also
verified.

Figures 6 and 7 show distributions of stresses, o, at X = 0.5, g, at Y = 0.5 and 0, at
X = 0.75, plotted for three sinusoidal fiber distributions corresponding to N, = 0.5, 5 and
10. Only one half of the distribution is shown because of symmetry. Solutions are fairly
rapidly converging and the results are obtained for N = 9 terms.

In the case of uniaxial compression, stresses, a,, g, and ¢,,, in a FFFF unidirectional
(UD) laminate are plotted in Figs 6(a)-(c), respectively. A stress concentration of
6./, ~ 1.1 is observed which is less severe compared to parabolic fiber distribution. In
general, 0, and o,, are quite small. Convergence behavior of uniaxial stress, o,, is presented
in Tables 2(a) and (b) for N, = 0.5 and 5, respectively. In Tables 2(a) and (b) out-of-plane
boundary conditions are denoted inside brackets. Stress values at X = 0.5 and Y varying
from 0 to 0.5 are calculated for three edge conditions, viz. FFFF, SSFF and SSSS. Increasing
the number of polynomial terms from five to nine leads to a fairly good convergence
especially at points located in the plate interior, e.g. X = 0.5 and Y = 0.2-0.5. In general,
stress convergence in FFFF and SSFF plates is faster than the SSSS plate. Also, N, = 0.5
leads to a better convergence characteristic than N, = 5. Stresses in a FFFF cross-ply
laminate (Np = 3) with Cp = 1 are plotted in Fig. 7. Uniaxial stress, a,, is largely uniform
over the width. It is noteworthy that 6,/0,, &~ 1 for N, = 0.5. It should be noted that g, is
more pronounced in a cross-ply compared to a unidirectional laminate as expected due to
the presence of 90° plies. Shear stresses are almost insignificant in both the U.D. and cross-
ply laminates. Edge effects, which are quite pronounced, are less likely to affect buckling
solutions as the plate is supported at the edges such that out-of-plane displacements are
Zero.

Numerical results indicate that in the case of U.D. as well as cross-ply laminates under
pure applied shear, the prebuckling stress state is one of uniform shear throughout, such
that, g,, = 0,0 and o, = 6, = 0. It is numerically verified for simply-supported and free
B.C.s and their combinations.

Buckling

The major part of the study is devoted to the computation of uniaxial and shear
buckling coeflicients, N, and N,,, respectively, for various B.C.s and fiber distributions for
unidirectional and cross-ply laminates with C, =2 and 1. It should be stressed, once
again, that the computation of buckling coefficients is based on accurate prebuckling stress
distributions which properly take into account material inhomogeneity. Presently, only
three layered cross-ply laminates (Np = 3) are considered, the cross-section of which, is
shown in Fig. 4. In all cases, results are obtained for square (a/b = 1) laminates by taking
N =6 in both the plane-stress and buckling problems. Buckling coefficients are also
obtained by assuming a uniform prebuckling state represented by 6, = 6,pand 6, = 7,, = 0
in uniaxial compression, and, o,, = 0,,0 and ¢, = ¢, = 0 in pure shear. These solutions are
denoted by a superscript “u”, e.g., Ny and N},

The uniaxial buckling coefficients, N, = o,0a’t/D;, are tabulated in Tables 3(a)~(c).
Here, D; = E;#*/12. The increase in buckling load when N, = 5 over uniform fiber distri-
bution, i.e. N, = 1, is shown in Table 4. As a general rule, a higher fiber concentration at
the centre compared to the edges (N, > 5) results in an increase in the buckling load. The
strain energy density near the central region is usually higher than near the edges and,
hence, location of higher fiber content in this region is intuitively appealing (Sherbourne
and Pandey, 1991) and, also, follows the notion of Spiller and Levy (1990) regarding the
optimal thickness distribution. From Tables 3(b) and (c), it can be seen that cross-ply
arrangements increase buckling loads for plates with loaded edges being simply supported,
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e.g. SSSS, SSCC, and decrease when loaded edges are clamped, e.g. CCCC, CCSS. Cross-
ply laminates with simply-supported loaded edges have slightly higher buckling loads than
0° laminates and the reverse is true when loaded edges are clamped. It suggests that cross-
ply construction is not effective when loaded edges are clamped. It is interesting to note
from Table 3(c) that the buckling behavior of SSCC cross-ply laminates with Cp = 1 is
rather exceptional, since higher fiber concentration at the edges (N, = 0.5) compared to the
middle increases the buckling load. The numerical results indicate that, for the range of the
parameter N, and boundary conditions considered herein, the error incurred in computing
buckling coefficients in accordance with the assumption of uniform prebuckling is not too
large and the qualitative nature of the solutions is well preserved. It must be stressed,
however, that such a conclusion follows a detailed parametric study, and its generalization
to other B.C.s and aspect ratios is cautioned. Convergence of N, is presented in Tables 5(a)
and (b) for U.D. and cross-ply (Cp = 1) laminates with CCCC and SSCC edges. In fact,
for all cases of fiber distributions and B.C.s, the buckling load converged monotonically
and could be accurately approximated by N = 6 terms in the polynomial series.

Uniaxial buckling loads of simply-supported 0° laminates with a parabolic fiber dis-
tribution given by eqn (18) are presented in Table 6 together with those obtained by Leissa
and Martin (1990). The results obtained by the two formulations appear to be in good
agreement. Minor discrepancies may be attributed to the fact that in-plane boundaries, in
the present case, are taken to be simply supported as opposed to the free boundaries
assumed by Leissa and Martin (1990). The properties of composite materials in Table 6
are taken from the previous study (Leissa and Martin, 1990).

Shear buckling coefficients, N,, = o,,a’t/D;, are tabulated in Tables 6(a)—(c). The
increase in buckling load when N, = 5 over uniform fiber distribution, i.e. N, = 1, is shown
in Table 7. The buckling load increases when fiber is concentrated at the centre, the increase
being maximum for a SSCC, 0° laminate. Cross-ply is more effective in shear buckling than
unidirectional laminates because of the orientation of fibers perpendicular to the shear
direction. Even in the case of uniform fiber distribution, N, = 1, the shear buckling load of
a CCCC cross-ply (Cp = 1) is 35% higher than that of an equal volume unidirectional (0°)
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Fig. 6. continued.

laminate. Because of uniform prebuckling under applied shear, buckling coefficients, N,

and N3, are identical, i.e. N,, = N}, for all the cases considered.

Comparison with Leissa and Martin (1990)

Leissa and Martin (1990) have studied buckling and vibration of simply-supported,
unidirectional (0°) laminae and variable fiber spacing defined by various types of dis-
tribution functions. The plane stress solutions were obtained by adopting a displacement
version of the Ritz method and employing series expansions for in-plane displacements, u
and v. In the present version of the Ritz analysis, stress function, F, is the only variable

as compared to the displacement formulation with two unknowns, # and v, which is
computationally advantageous. In the buckling analysis, the assumption of simply-sup-
ported boundaries allowed the use of the Fourier sine series, sin mnX sinnnY, as the
displacement function which simplified the evaluation of the displacement derivatives and
the energy integrals. It is also clear that the plane stress and buckling analyses are treated
independently resulting in increased computational efforts. This approach may appear to
be suitable in the particular case of simply-supported plates but its extension to other
general boundary conditions is believed to be complicated, at least, from a computational
point of view. In specific terms, the evaluation of work done by in-plane forces at incipient
buckling, that is the load matrix, G,,;, in eqn (35), would be very difficult when different
sets of functions, for in-plane and out-of-plane displacements, are employed.

It is proposed, therefore, to combine the plane stress and the buckling analysis using
the classical bending—stretching analogy which allows the use of the same set of displacement
functions in the two stages. This key feature has greatly simplified the computational
formulation of the Ritz method. Orthogonal polynomials are convenient means for handling

simple and clamped B.C.s and their combinations. Also, the formulation provides a general
framework to accommodate axial as well as shear loading.

The two formulations are compared in Table 8 where uniaxial buckling loads of simply-
supported 0° laminates with a parabolic fiber distribution given by eqn (18) are presented
together with those obtained by Leissa and Martin (1990). The results obtained by the two
formulations appear to be in good agreement. Minor discrepancies may be attributed to

SAS 30:1-E
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the fact that in-plane boundaries, in the present case, are taken to be simply supported as
opposed to free boundaries assumed by Leissa and Martin (1990). The results shown in
Table 8 are based on the same composite material properties as used in the previous study
(Leissa and Martin, 1990).

CONCLUSION

The use of composite materials in the fabrication of structural components significantly
widens the range of possible designs open to engineers. Cases involving non-uniform fiber
distribution are much more difficult to tackle and have thus received much less attention

Table 2. Convergence of ¢, in a 0° lamina
(a) For N,=0.5

FFFF (CCCC) SSFF (SSCC) SSSS (SSSS)

Y N=5 N=17 N=9 N=5 N=7 N=9 N=5 N=7 N=9
0 1.015 1.0142  1.0161 0.99294  0.99448 0.99701 0.25448 —0.02027 —0.04242
0.1 1.0083 1.0083  1.0086 1.0115  1.0108  1.0115 0.77109 0.84204  0.8471
0.2 1.0049 1.0047  1.00456 1.0097 1.0096  1.0092 1.0132 1.0123 1.001
03 099766 0.99786 0.99787 0.99898  0.99939  0.9994 1.0444 0.99736  1.0057

04 0.98968 098974 0.98986 0.98852  0.98856 0.98879 0.99045 0.99311  0.99577
0.5 0.98626 0.98608 0.9859 0.98434  0.98402 0.98369 0.95875 0.99985  0.99079

b)N, =5
FFFF (CCCC) SSFF (8SCC) SSSS (SSSS)

Y N=35 N=17 N=9 N=5 N=7 N=9 N=5 N=7 N=9
0 0.67113  0.65908 0.66732 0.58711  0.58998  0.59963 0.015726 -—0.10522 —0.03017
0.1 1.0441 1.0428 1.0452 1.0188 1.0168 1.0204 0.70797 0.76619  0.75936
02 10446 1.0413 1.0392 1.0527  1.0524  1.0493 1.0367 1.0111 1.0215
03 10067 1.0122 1.0131 1.0273 1.0294  1.0308 1.0853 1.0364 1.0268
04 10021 1.0026 1.0036 1.0241 1.0241 1.0256 1.0189 1.0321 1.0296

05 10069 1.0013  0.99916 1.0283 1.0262 1.0231 0.97873 1.0326 1.0436
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Table 3. Uniaxial buckling coefficients
(a) 0° laminate

SSSS cccee SSCC CCSS
Nv N, N® N, Nt N, Y N N
0.5 5.3809 5.2545 18.7762 18.5351 6.8921 6.8188 17.9418 17.7535
1 6.0752 6.0061 22.1795 22.1795 7.4194 7.4781 21.1017 21.0452
5 7.1074 7.1206 26.5831 27.1439 8.3918 8.749 247478 24,6787
10 7.2831 7.3143 27.1262 27.9418 8.5449 9.0082 25.2008 25.1036
20 7.3749 7.4172 27.3396 28.3576 8.6155 9.1538 2543 25.3014
(b) Cross-ply laminate (C, = 2)
§SSS CCcC SSCC CCSS
Ne N, Y N, N N, NY N, N
0.5 5.2681 5.2606 19.2954 18.6926 7.8992 7.6309 18.198 17.3472
1 6.2353 6.0061 22,1525 22.1525 8.1896 8.2046 209823 204768
5 7.2011 7.138 25.6434 26.8593 8.6803 9.1934 24,5344 24.2808
10 7.3716 7.3386 25.9923  27.5909 8.7129 9.3674 25.0609  24.7957
20 7.4616 7.4455 26.1013  27.9615 8.7142 9.4605 253284 25.0426
(c) Cross-ply laminate (Cp = 1)
SSSS cecece SSCC CCSS
N N, Y N, Y N, I N, N
0.5 5.76 5.2636 19.8299 19.026 9.9971 9.558 17.4146 16.2837
1 6.3232 6.0061 22.0407 22.0707 9.9107 9.9257 19.8383 19.1265
5 7.2444 7.1475 24.5136 26.0285 9.5431 10.2338 23.1545 229174
10 7.4084 7.3521 24.6507  26.574 9.3481 10.1943 23.6872  23.5042
20 74947 74612 24,6447  26.8255 92111  10.15 239618  23.797%
Table 4. Percentage increase in N, (N, = 5)
Laminate SSSS ccece SSCC CCSS
0 Laminate 16.99 19.85 13.11 17.28
Cross-ply (Cp = 2) 15.49 15.76 5.99 16.93
Cross-ply (Cp = 1) 14.57 11.22 —-3.71 16.71
Table 5. Convergence of N,
(a) 0° laminate
CCCC SSCC
Nv N=S5§ N=6 N=17 N=275 N=6 N=7
0.5 18.7762 18.7762 18.7755 6.89207 6.89207 6.89205
1 22.1795 22.1795 22.1794 741944 7.41944 7.41948
b 26.5831 26.5831 26.5783 8.39182 8.39182 8.39205
10 27.1262 27.1262 27.113 8.54488 8.54488 8.54521
20 27.3396 27.3396 27.3154 8.61547 8.61547 8.61565
(b) Cross-ply laminate (Cp = 1)
CCCC SscC
Nv N=S5 N=6 N=7 N=35 N=6 N=7
0.5 19.8299 19.8299 19.8305 9.99719 9.99719 9.99668
1 22.0707 22.0707 22.0706 9.91073 9.91073 9.91068
5 24.5136 24.5136 24.5166 9.54312 9.54312 9.54255
10 24.6507 24.6507 24,6531 9.3481 9.3481 9.34465
20 24.6447 24.6447 24.6437 9.21113 9.21113 9.20357
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Table 6. Shear buckling coefficients
(a) 0° laminate
SSSS CCCC SSCC CCSS
Nv N, N, N,, N, N, Ny, N, N3,
0.5 10.311 10.311 17.322 17.322 10.9909  10.9909 17.6881  17.6881
1 11.3922  11.3922 19.8345  19.8345 12.5302  12.5302 19.6373  19.6373
5 13.0305  13.0305 23.2361  23.2361 14.85 14.85 22,2833  22.2833
10 13.3242  13.3242 23.6576  23.6576 15.242 15.242 22.645 22.645
20 13.4834  13.4834 23.8465  23.8465 15.4485  15.4485 22.7999  22.7999
(b) Cross-ply laminate (C, = 2)
SSSS CCCC SSCC CCSS
Nv N, N, N, N, N, Ny Ny Ny
0.5 11.564 11.564 19.1058  19.1058 12,1568  12.1568 18.7211  18.7211
1 12.8196  12.8196 21.7935  21.7935 13.683 13.683 20.8399  20.8399
5 14.5896  14.5896 25.1035  25.1035 15.7773  15.7773 23.4709  23.4709
10 14.8574  14.8574 25.4435 254435 16.0966  16.0966 23.7475  23.7475
20 14.9869  14.9869 25.5736  25.5736 16.2585  16.2585 23.8341  23.8341
(c) Cross-ply laminate (Cp = 1)
SSSS CCCC SSCC CCSS
Nv N, N3, N, N, N, N, N, N,
0.5 12.5803  12.5803 220777 22.0777 144076  14.4076 20.4655  20.4655
1 13.881 13.881 25.5331  25.5331 15.871 15.871 22.8321  22.8321
5 15.4648 154648 28.7833  28.7833 17.4856  17.4856 25.6343  25.6343
10 15.6275 156275 28.9679  28.9679 17.6332  17.6332 25.8538  25.8538
20 15.683 15.683 28.9767  28.9767 17.6813  17.6813 25.8717  25.8717
Table 7. Percentage increase in N, (N, = 5)
Laminate SSSS CcccC SSCC CCSs
0 Laminate 14.38 17.15 18.51 13.47
Cross-ply (Cp = 2) 13.81 15.19 15.3 12.62
Cross-ply (Cp = 1) 11.4 12.73 10.17 12.27

Table 8. Comparison with results obtained by Leissa and Martin (1990)

Present Leissa et al. (1990)
Composite N, Ny N,
Glass—epoxy 13.6923 13.7129 13.0305
Graphite-epoxy 9.6371 9.7323 9.4454
Boron—-epoxy 9.0870 9.1803 8.9420

in the literature. The paper explores the concept of designing improved, inhomogeneous
plate elements that capitalize upon the new degrees of freedom offered by fibrous
composites. A general approach is presented for uniaxial and shear buckling analysis of
rectangular, inhomogeneous, orthotropic, laminated composite plates under a variety of
combinations of simple and clamped edges. The classical analogy between plate bending
and stretching is used to present a unified treatment of the subject matter. A Ritz method,
employing Gram-Schmidt orthogonal polynomial sequences, is the basis of the analysis
and computation.

In principle, the true stress distribution must be used in the buckling analysis to
ascertain its accuracy. However, once a parametric study has been carried out on the basis
of the formal two-dimensional elasticity solution, it is possible to identify the regime of
behavior where the assumption of uniform prebuckling could offer considerable sim-
plification without admitting much error. The important findings in the case of uniaxial
compression are, the stress concentration for a sinusoidal distribution of fibers is not severe
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(maximum about 10%), the prebuckling stress field has little influence on the buckling load
and cross-ply construction in uniaxial compression is more efficient when the loaded edges
are simply supported. Uniaxial and shear buckling loads, as a rule, increase by keeping a
higher fiber concentration at the centre over the edges.

The paper suggests a more practical way of designing inhomogeneous laminates that
significantly improves the axial and shear buckling resistance. Although, the sinusoidal
fiber distribution studied herein may not be truly optimal in a strict and formal sense, it
provides motivation for a sophisticated optimization study. At present, the technological
feasibility of such designs is questionable, nevertheless, the future possibilities arising from
a synergism of composite technology with microstructural design are highlighted which
must be followed by extensive design-trade studies and experimental verification in order
to inspire the necessary confidence in commercial applications.
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